TensorFlow学习笔记2:基本运算
import tensorflow as tf a = tf.constant(2) b = tf.constant(3) with tf.Session() as sess: print "a: %i" % sess.run(a), "b: %i" % sess.run(b) print "Addition with constants: %i" % sess.run(a+b) print "Multiplication with constants: %i" % sess.run(a*b)
代码中定义了a,b两个常量,分别为2和3,然后建立一个default session,输出a,b,a+b,a*b的值
在TensorFlow中,a,b也可以先不赋值,在运行过程中才赋具体的值,比如以下代码:
import tensorflow as tf a = tf.placeholder(tf.int16) b = tf.placeholder(tf.int16) add = tf.add(a, b) mul = tf.multiply(a, b) with tf.Session() as sess: print "Addition with variables: %i" % sess.run(add, feed_dict={a: 1, b: 2}) print "Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3})tf.placeholder(dtype, shape=None, name=None) 可以理解成形参,在session run的时候,a,b有了具体的值
最后,TensorFlow的矩阵运算
import tensorflow as tf matrix1 = tf.constant([[1., 2.]]) matrix2 = tf.constant([[3.],[4.]]) product = tf.matmul(matrix1, matrix2) with tf.Session() as sess: result = sess.run(product) print resultmatrix1是1行2列,matrix2是2行1列,可以注意一下矩阵的表示方法,两者相乘的结果是一个1行1列的矩阵,元素为11
声明:该文观点仅代表作者本人,入门客AI创业平台信息发布平台仅提供信息存储空间服务,如有疑问请联系rumenke@qq.com。
- 上一篇:没有了
- 下一篇:没有了