MapReduce作业配置参数
可在客户端的mapred-site.xml中配置,作为MapReduce作业的缺省配置参数。也可以在作业提交时,个性化指定这些参数。
参数名称 | 缺省值 | 说明 |
mapreduce.job.name | 作业名称 | |
mapreduce.job.priority | NORMAL | 作业优先级 |
yarn.app.mapreduce.am.resource.mb | 1536 | MR ApplicationMaster占用的内存量 |
yarn.app.mapreduce.am.resource.cpu-vcores | 1 | MR ApplicationMaster占用的虚拟CPU个数 |
mapreduce.am.max-attempts | 2 | MR ApplicationMaster最大失败尝试次数 |
mapreduce.map.memory.mb | 1024 | 每个Map Task需要的内存量 |
mapreduce.map.cpu.vcores | 1 | 每个Map Task需要的虚拟CPU个数 |
mapreduce.map.maxattempts | 4 | Map Task最大失败尝试次数 |
mapreduce.reduce.memory.mb | 1024 | 每个Reduce Task需要的内存量 |
mapreduce.reduce.cpu.vcores | 1 | 每个Reduce Task需要的虚拟CPU个数 |
mapreduce.reduce.maxattempts | 4 | Reduce Task最大失败尝试次数 |
mapreduce.map.speculative | false | 是否对Map Task启用推测执行机制 |
mapreduce.reduce.speculative | false | 是否对Reduce Task启用推测执行机制 |
mapreduce.job.queuename | default | 作业提交到的队列 |
mapreduce.task.io.sort.mb | 100 | 任务内部排序缓冲区大小 |
mapreduce.map.sort.spill.percent | 0.8 | Map阶段溢写文件的阈值(排序缓冲区大小的百分比) |
mapreduce.reduce.shuffle.parallelcopies | 5 | Reduce Task启动的并发拷贝数据的线程数目 |
注意,MRv2重新命名了MRv1中的所有配置参数,但兼容MRv1中的旧参数,只不过会打印一条警告日志提示用户参数过期。MapReduce新 旧参数对照表可参考Java类org.apache.hadoop.mapreduce.util.ConfigUtil,举例如下:
过期参数名 | 新参数名 |
mapred.job.name | mapreduce.job.name |
mapred.job.priority | mapreduce.job.priority |
mapred.job.queue.name | mapreduce.job.queuename |
mapred.map.tasks.speculative.execution | mapreduce.map.speculative |
mapred.reduce.tasks.speculative.execution | mapreduce.reduce.speculative |
io.sort.factor | mapreduce.task.io.sort.factor |
io.sort.mb | mapreduce.task.io.sort.mb |
原文链接:http://dongxicheng.org/mapreduce-nextgen/hadoop-yarn-configurations-mapreduce/
【编辑推荐】
- Hadoop 2.0中作业日志收集原理以及配置方法
- Hadoop YARN中内存和CPU两种资源的调度和隔离
- Hadoop YARN配置参数剖析(1)—RM与NM相关参数
- Hadoop YARN配置参数剖析(2)—权限与日志聚集相关参数
声明:该文观点仅代表作者本人,入门客AI创业平台信息发布平台仅提供信息存储空间服务,如有疑问请联系rumenke@qq.com。
- 上一篇:没有了
- 下一篇: Unix:用户自定义信号-SIGUSR1和SIGUSR2