Hive常用的SQL命令操作(hive shell下show functions显示所有可用的函数,describe function 函数名查看具体用法)
文章来源:http://blog.sina.com.cn/s/blog_4152a9f501013d1d.html
Hive提供了很多的函数,可以在命令行下show functions罗列所有的函数,你会发现这些函数名与mysql的很相近,绝大多数相同的,可通过describe function functionName 查看函数使用方法。hive支持的数据类型很简单就INT(4 byte integer),BIGINT(8 byte integer),FLOAT(single precision),DOUBLE(double precision),BOOLEAN,STRING等原子类型,连日期时间类型也不支持,但通过to_date、unix_timestamp、date_diff、date_add、date_sub等函数就能完成mysql同样的时间日期复杂操作。 如下示例: select * from tablename where to_date(cz_time) > to_date("2050-12-31"); select * from tablename where unix_timestamp(cz_time) > unix_timestamp("2050-12-31 15:32:28");
分区 hive与mysql分区有些区别,mysql分区是用表结构中的字段来分区(range,list,hash等),而hive不同,他需要手工指定分区列,这个列是独立于表结构,但属于表中一列,在加载数据时手动指定分区。
创建表
hive> CREATE TABLE pokes (foo INT, bar STRING COMMENT "This is bar");
创建表并创建索引字段ds
hive> CREATE TABLE invites (foo INT, bar STRING) PARTITIONED BY (ds STRING);
显示所有表
hive> SHOW TABLES;
按正条件(正则表达式)显示表,
hive> SHOW TABLES ".*s";
表添加一列
hive> ALTER TABLE pokes ADD COLUMNS (new_col INT);
添加一列并增加列字段注释
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT "a comment");
更改表名
hive> ALTER TABLE events RENAME TO 3koobecaf;
删除列
hive> DROP TABLE pokes;
元数据存储
将本地文件中的数据加载到表中
hive> LOAD DATA LOCAL INPATH "./examples/files/kv1.txt" OVERWRITE INTO TABLE pokes;
加载本地数据,同时给定分区信息
hive> LOAD DATA LOCAL INPATH "./examples/files/kv2.txt" OVERWRITE INTO TABLE invites PARTITION (ds="2008-08-15");
加载DFS数据 ,同时给定分区信息
hive> LOAD DATA INPATH "/user/myname/kv2.txt" OVERWRITE INTO TABLE invites PARTITION (ds="2008-08-15");
The above command will load data from an HDFS file/directory to the table. Note that loading data from HDFS will result in moving the file/directory. As a result, the operation is almost instantaneous.
SQL 操作
按先件查询
hive> SELECT a.foo FROM invites a WHERE a.ds="";
将查询数据输出至目录
hive> INSERT OVERWRITE DIRECTORY "/tmp/hdfs_out" SELECT a.* FROM invites a WHERE a.ds="";
将查询结果输出至本地目录
hive> INSERT OVERWRITE LOCAL DIRECTORY "/tmp/local_out" SELECT a.* FROM pokes a;
选择所有列到本地目录
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a;
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a WHERE a.key < 100;
hive> INSERT OVERWRITE LOCAL DIRECTORY "/tmp/reg_3" SELECT a.* FROM events a;
hive> INSERT OVERWRITE DIRECTORY "/tmp/reg_4" select a.invites, a.pokes FROM profiles a;
hive> INSERT OVERWRITE DIRECTORY "/tmp/reg_5" SELECT COUNT(1) FROM invites a WHERE a.ds="";
hive> INSERT OVERWRITE DIRECTORY "/tmp/reg_5" SELECT a.foo, a.bar FROM invites a;
hive> INSERT OVERWRITE LOCAL DIRECTORY "/tmp/sum" SELECT SUM(a.pc) FROM pc1 a;
将一个表的统计结果插入另一个表中
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT a.bar, count(1) WHERE a.foo > 0 GROUP BY a.bar;
hive> INSERT OVERWRITE TABLE events SELECT a.bar, count(1) FROM invites a WHERE a.foo > 0 GROUP BY a.bar;
JOIN
hive> FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo, t2.foo;
将多表数据插入到同一表中
FROM src
INSERT OVERWRITE TABLE dest1 SELECT src.* WHERE src.key < 100
INSERT OVERWRITE TABLE dest2 SELECT src.key, src.value WHERE src.key >= 100 and src.key < 200
INSERT OVERWRITE TABLE dest3 PARTITION(ds="2008-04-08", hr="12") SELECT src.key WHERE src.key >= 200 and src.key < 300
INSERT OVERWRITE LOCAL DIRECTORY "/tmp/dest4.out" SELECT src.value WHERE src.key >= 300;
将文件流直接插入文件
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar) AS (oof, rab) USING "/bin/cat" WHERE a.ds > "2008-08-09";
This streams the data in the map phase through the script /bin/cat (like hadoop streaming). Similarly - streaming can be used on the reduce side (please see the Hive Tutorial or examples)
实际示例
创建一个表
CREATE TABLE u_data (
userid INT,
movieid INT,
rating INT,
unixtime STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY " "
STORED AS TEXTFILE;
下载示例数据文件,并解压缩
wget http://www.grouplens.org/system/files/ml-data.tar__0.gz
tar xvzf ml-data.tar__0.gz
加载数据到表中
LOAD DATA LOCAL INPATH "ml-data/u.data"
OVERWRITE INTO TABLE u_data;
统计数据总量
SELECT COUNT(1) FROM u_data;
现在做一些复杂的数据分析
创建一个 weekday_mapper.py: 文件,作为数据按周进行分割
import sys
import datetime
for line in sys.stdin:
line = line.strip()
userid, movieid, rating, unixtime = line.split(" ")
生成数据的周信息
weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
print " ".join([userid, movieid, rating, str(weekday)])
使用映射脚本
//创建表,按分割符分割行中的字段值
CREATE TABLE u_data_new (
userid INT,
movieid INT,
rating INT,
weekday INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY " ";
//将python文件加载到系统
add FILE weekday_mapper.py;
将数据按周进行分割
INSERT OVERWRITE TABLE u_data_new
SELECT
TRANSFORM (userid, movieid, rating, unixtime)
USING "python weekday_mapper.py"
AS (userid, movieid, rating, weekday)
FROM u_data;
SELECT weekday, COUNT(1)
FROM u_data_new
GROUP BY weekday;
- 上一篇:没有了
- 下一篇: Linux如何查看进程、杀死进程、启动进程等常用命令