入门客AI创业平台(我带你入门,你带我飞行)
博文笔记

iptables extensions (包括match和target部分)

创建时间:2015-06-11 投稿人: 浏览次数:3238
  • 12.04 LTS
  • 14.04 LTS
  • 14.10
  • 15.04
    • name
    • synopsis
    • match extensions
    • target extensions
utopic (8) iptables-extensions.8.gz
Provided by: iptables_1.4.21-2ubuntu1_i386 bug

NAME

       iptables-extensions  —  list  of  extensions  in  the standard iptables
       distribution

SYNOPSIS

       ip6tables  [-m  name  [module-options...]]   [-j  target-name  [target-
       options...]

       iptables   [-m  name  [module-options...]]   [-j  target-name  [target-
       options...]

MATCH EXTENSIONS

       iptables can use extended  packet  matching  modules  with  the  -m  or
       --match  options,  followed  by  the matching module name; after these,
       various extra command line options become available, depending  on  the
       specific  module.   You  can specify multiple extended match modules in
       one line, and you can use the -h or --help options after the module has
       been  specified  to receive help specific to that module.  The extended
       match modules are evaluated in the order  they  are  specified  in  the
       rule.

       If  the  -p  or  --protocol was specified and if and only if an unknown
       option is encountered, iptables will try load a  match  module  of  the
       same name as the protocol, to try making the option available.

   addrtype
       This module matches packets based on their address type.  Address types
       are used within the kernel networking stack  and  categorize  addresses
       into various groups.  The exact definition of that group depends on the
       specific layer three protocol.

       The following address types are possible:

       UNSPEC an unspecified address (i.e. 0.0.0.0)

       UNICAST
              an unicast address

       LOCAL  a local address

       BROADCAST
              a broadcast address

       ANYCAST
              an anycast packet

       MULTICAST
              a multicast address

       BLACKHOLE
              a blackhole address

       UNREACHABLE
              an unreachable address

       PROHIBIT
              a prohibited address

       THROW  FIXME

       NAT    FIXME

       XRESOLVE

       [!] --src-type type
              Matches if the source address is of given type

       [!] --dst-type type
              Matches if the destination address is of given type

       --limit-iface-in
              The address type checking can be limited to  the  interface  the
              packet   is  coming  in.  This  option  is  only  valid  in  the
              PREROUTING, INPUT and FORWARD chains.  It  cannot  be  specified
              with the --limit-iface-out option.

       --limit-iface-out
              The  address  type  checking can be limited to the interface the
              packet  is  going  out.  This  option  is  only  valid  in   the
              POSTROUTING,  OUTPUT  and FORWARD chains. It cannot be specified
              with the --limit-iface-in option.

   ah (IPv6-specific)
       This module matches the parameters in Authentication  header  of  IPsec
       packets.

       [!] --ahspi spi[:spi]
              Matches SPI.

       [!] --ahlen length
              Total length of this header in octets.

       --ahres
              Matches if the reserved field is filled with zero.

   ah (IPv4-specific)
       This module matches the SPIs in Authentication header of IPsec packets.

       [!] --ahspi spi[:spi]

   bpf
       Match  using  Linux  Socket  Filter.  Expects  a BPF program in decimal
       format. This is the format generated by the nfbpf_compile utility.

       --bytecode code
              Pass the BPF byte code format (described in the example below).

       The code format is similar to the output of the tcpdump  -ddd  command:
       one  line  that stores the number of instructions, followed by one line
       for each instruction. Instruction lines follow the pattern "u16  u8  u8
       u32"  in  decimal notation. Fields encode the operation, jump offset if
       true, jump offset if false and generic multiuse field "K". Comments are
       not supported.

       For  example,  to  read  only packets matching "ip proto 6", insert the
       following, without the comments or trailing whitespace:

              4               # number of instructions
              48 0 0 9        # load byte  ip->proto
              21 0 1 6        # jump equal IPPROTO_TCP
              6 0 0 1         # return     pass (non-zero)
              6 0 0 0         # return     fail (zero)

       You can pass this filter to the bpf match with the following command:

              iptables -A OUTPUT -m bpf --bytecode "4,48 0 0 9,21 0 1 6,6 0  0
              1,6 0 0 0" -j ACCEPT

       Or instead, you can invoke the nfbpf_compile utility.

              iptables  -A  OUTPUT  -m  bpf --bytecode "`nfbpf_compile RAW "ip
              proto 6"`" -j ACCEPT

       You may want to learn more about BPF from FreeBSD"s bpf(4) manpage.

   cluster
       Allows you to deploy gateway and back-end load-sharing clusters without
       the need of load-balancers.

       This  match requires that all the nodes see the same packets. Thus, the
       cluster match decides if this node has to handle  a  packet  given  the
       following options:

       --cluster-total-nodes num
              Set number of total nodes in cluster.

       [!] --cluster-local-node num
              Set the local node number ID.

       [!] --cluster-local-nodemask mask
              Set  the  local  node  number  ID  mask. You can use this option
              instead of --cluster-local-node.

       --cluster-hash-seed value
              Set seed value of the Jenkins hash.

       Example:

              iptables  -A  PREROUTING  -t   mangle   -i   eth1   -m   cluster
              --cluster-total-nodes       2       --cluster-local-node       1
              --cluster-hash-seed 0xdeadbeef -j MARK --set-mark 0xffff

              iptables  -A  PREROUTING  -t   mangle   -i   eth2   -m   cluster
              --cluster-total-nodes       2       --cluster-local-node       1
              --cluster-hash-seed 0xdeadbeef -j MARK --set-mark 0xffff

              iptables -A PREROUTING -t mangle -i eth1 -m mark ! --mark 0xffff
              -j DROP

              iptables -A PREROUTING -t mangle -i eth2 -m mark ! --mark 0xffff
              -j DROP

       And the following commands to make all nodes see the same packets:

              ip maddr add 01:00:5e:00:01:01 dev eth1

              ip maddr add 01:00:5e:00:01:02 dev eth2

              arptables -A OUTPUT -o eth1 --h-length 6 -j mangle --mangle-mac-
              s 01:00:5e:00:01:01

              arptables  -A  INPUT  -i  eth1  --h-length  6  --destination-mac
              01:00:5e:00:01:01 -j mangle --mangle-mac-d 00:zz:yy:xx:5a:27

              arptables  -A  OUTPUT   -o   eth2   --h-length   6   -j   mangle
              --mangle-mac-s 01:00:5e:00:01:02

              arptables  -A  INPUT  -i  eth2  --h-length  6  --destination-mac
              01:00:5e:00:01:02 -j mangle --mangle-mac-d 00:zz:yy:xx:5a:27

       NOTE: the arptables commands above use mainstream syntax.  If  you  are
       using arptables-jf included in some RedHat, CentOS and Fedora versions,
       you will hit syntax errors. Therefore, you"ll have to  adapt  these  to
       the arptables-jf syntax to get them working.

       In  the  case of TCP connections, pickup facility has to be disabled to
       avoid marking TCP ACK packets coming in the reply direction as valid.

              echo 0 > /proc/sys/net/netfilter/nf_conntrack_tcp_loose

   comment
       Allows you to add comments (up to 256 characters) to any rule.

       --comment comment

       Example:
              iptables -A INPUT -i eth1 -m comment --comment "my local LAN"

   connbytes
       Match by how many bytes or packets a connection  (or  one  of  the  two
       flows  constituting  the  connection)  has  transferred  so  far, or by
       average bytes per packet.

       The counters are 64-bit and are thus not expected to overflow ;)

       The primary use is to detect long-lived downloads and mark them  to  be
       scheduled using a lower priority band in traffic control.

       The  transferred  bytes  per  connection  can  also  be  viewed through
       `conntrack -L` and accessed via ctnetlink.

       NOTE that for connections which have  no  accounting  information,  the
       match  will  always return false. The "net.netfilter.nf_conntrack_acct"
       sysctl flag  controls  whether  new  connections  will  be  byte/packet
       counted.  Existing  connection  flows  will not be gaining/losing a/the
       accounting structure when be sysctl flag is flipped.

       [!] --connbytes from[:to]
              match packets  from  a  connection  whose  packets/bytes/average
              packet size is more than FROM and less than TO bytes/packets. if
              TO is omitted only FROM check is done.  "!"  is  used  to  match
              packets not falling in the range.

       --connbytes-dir {original|reply|both}
              which packets to consider

       --connbytes-mode {packets|bytes|avgpkt}
              whether  to  check  the  amount  of  packets,  number  of  bytes
              transferred or the  average  size  (in  bytes)  of  all  packets
              received  so  far.  Note  that when "both" is used together with
              "avgpkt", and data is going (mainly) only in one direction  (for
              example HTTP), the average packet size will be about half of the
              actual data packets.

       Example:
              iptables    ..    -m    connbytes    --connbytes    10000:100000
              --connbytes-dir both --connbytes-mode bytes ...

   connlabel
       Module  matches  or  adds  connlabels  to a connection.  connlabels are
       similar to connmarks, except labels are bit-based; i.e.  all labels may
       be  attached  to  a flow at the same time.  Up to 128 unique labels are
       currently supported.

       [!] --label name
              matches if label name has been set on a connection.  Instead  of
              a  name  (which  will  be  translated  to  a number, see EXAMPLE
              below), a number may be used instead.   Using  a  number  always
              overrides connlabel.conf.

       --set  if  the  label has not been set on the connection, set it.  Note
              that setting a label can  fail.   This  is  because  the  kernel
              allocates  the  conntrack label storage area when the connection
              is created, and it only reserves the amount of  memory  required
              by  the  ruleset  that  exists  at  the  time  the connection is
              created.  In this case, the match will fail (or succeed, in case
              --label option was negated).

       This  match  depends  on  libnetfilter_conntrack 1.0.4 or later.  Label
       translation is done via the  /etc/xtables/connlabel.conf  configuration
       file.

       Example:

              0    eth0-in
              1    eth0-out
              2    ppp-in
              3    ppp-out
              4    bulk-traffic
              5    interactive

   connlimit
       Allows  you  to restrict the number of parallel connections to a server
       per client IP address (or client address block).

       --connlimit-upto n
              Match if the number of existing connections is below or equal n.

       --connlimit-above n
              Match if the number of existing connections is above n.

       --connlimit-mask prefix_length
              Group hosts using the prefix length. For IPv4, this  must  be  a
              number  between  (including)  0  and 32. For IPv6, between 0 and
              128. If  not  specified,  the  maximum  prefix  length  for  the
              applicable protocol is used.

       --connlimit-saddr
              Apply  the  limit  onto the source group. This is the default if
              --connlimit-daddr is not specified.

       --connlimit-daddr
              Apply the limit onto the destination group.

       Examples:

       # allow 2 telnet connections per client host
              iptables  -A  INPUT  -p  tcp  --syn  --dport  23  -m   connlimit
              --connlimit-above 2 -j REJECT

       # you can also match the other way around:
              iptables   -A  INPUT  -p  tcp  --syn  --dport  23  -m  connlimit
              --connlimit-upto 2 -j ACCEPT

       # limit the number of parallel HTTP requests to 16 per  class  C  sized
       source network (24 bit netmask)
              iptables  -p tcp --syn --dport 80 -m connlimit --connlimit-above
              16 --connlimit-mask 24 -j REJECT

       # limit the number of parallel HTTP requests to 16 for the  link  local
       network
              (ipv6)  ip6tables  -p  tcp  --syn  --dport  80  -s  fe80::/64 -m
              connlimit --connlimit-above 16 --connlimit-mask 64 -j REJECT

       # Limit the number of connections to a particular host:
              ip6tables -p tcp --syn --dport  49152:65535  -d  2001:db8::1  -m
              connlimit --connlimit-above 100 -j REJECT

   connmark
       This  module  matches  the  netfilter  mark  field  associated  with  a
       connection (which can be set using the CONNMARK target below).

       [!] --mark value[/mask]
              Matches packets in connections with the given mark value  (if  a
              mask  is specified, this is logically ANDed with the mark before
              the comparison).

   conntrack
       This module, when combined with connection tracking, allows  access  to
       the connection tracking state for this packet/connection.

       [!] --ctstate statelist
              statelist  is a comma separated list of the connection states to
              match.  Possible states are listed below.

       [!] --ctproto l4proto
              Layer-4 protocol to match (by number or name)

       [!] --ctorigsrc address[/mask]

       [!] --ctorigdst address[/mask]

       [!] --ctreplsrc address[/mask]

       [!] --ctrepldst address[/mask]
              Match against original/reply source/destination address

       [!] --ctorigsrcport port[:port]

       [!] --ctorigdstport port[:port]

       [!] --ctreplsrcport port[:port]

       [!] --ctrepldstport port[:port]
              Match    against    original/reply    source/destination    port
              (TCP/UDP/etc.) or GRE key.  Matching against port ranges is only
              supported in kernel versions above 2.6.38.

       [!] --ctstatus statelist
              statuslist is a comma separated list of the connection  statuses
              to match.  Possible statuses are listed below.

       [!] --ctexpire time[:time]
              Match remaining lifetime in seconds against given value or range
              of values (inclusive)

       --ctdir {ORIGINAL|REPLY}
              Match packets that are flowing in the  specified  direction.  If
              this  flag  is  not  specified  at  all, matches packets in both
              directions.

       States for --ctstate:

       INVALID
              The packet is associated with no known connection.

       NEW    The packet has started a new connection or otherwise  associated
              with a connection which has not seen packets in both directions.

       ESTABLISHED
              The  packet  is  associated  with  a  connection  which has seen
              packets in both directions.

       RELATED
              The packet is starting a new connection, but is associated  with
              an  existing connection, such as an FTP data transfer or an ICMP
              error.

       UNTRACKED
              The  packet  is  not  tracked  at  all,  which  happens  if  you
              explicitly untrack it by using -j CT --notrack in the raw table.

       SNAT   A virtual state, matching if the original source address differs
              from the reply destination.

       DNAT   A virtual state, matching if the  original  destination  differs
              from the reply source.

       Statuses for --ctstatus:

       NONE   None of the below.

       EXPECTED
              This  is  an expected connection (i.e. a conntrack helper set it
              up).

       SEEN_REPLY
              Conntrack has seen packets in both directions.

       ASSURED
              Conntrack entry should never be early-expired.

       CONFIRMED
              Connection is confirmed: originating packet has left box.

   cpu
       [!] --cpu number
              Match cpu handling this packet. cpus  are  numbered  from  0  to
              NR_CPUS-1  Can  be  used  in combination with RPS (Remote Packet
              Steering) or  multiqueue  NICs  to  spread  network  traffic  on
              different queues.

       Example:

       iptables  -t  nat  -A  PREROUTING  -p  tcp --dport 80 -m cpu --cpu 0 -j
       REDIRECT --to-port 8080

       iptables -t nat -A PREROUTING -p tcp --dport  80  -m  cpu  --cpu  1  -j
       REDIRECT --to-port 8081

       Available since Linux 2.6.36.

   dccp
       [!] --source-port,--sport port[:port]

       [!] --destination-port,--dport port[:port]

       [!] --dccp-types mask
              Match  when  the  DCCP packet type is one of "mask". "mask" is a
              comma-separated list of packet types.  Packet types are: REQUEST
              RESPONSE  DATA  ACK  DATAACK  CLOSEREQ  CLOSE RESET SYNC SYNCACK
              INVALID.

       [!] --dccp-option number
              Match if DCCP option set.

   devgroup
       Match device group of a packets incoming/outgoing interface.

       [!] --src-group name
              Match device group of incoming device

       [!] --dst-group name
              Match device group of outgoing device

   dscp
       This module matches the 6 bit DSCP field within the TOS field in the IP
       header.  DSCP has superseded TOS within the IETF.

       [!] --dscp value
              Match against a numeric (decimal or hex) value [0-63].

       [!] --dscp-class class
              Match  the  DiffServ class. This value may be any of the BE, EF,
              AFxx or CSx  classes.   It  will  then  be  converted  into  its
              according numeric value.

   dst (IPv6-specific)
       This module matches the parameters in Destination Options header

       [!] --dst-len length
              Total length of this header in octets.

       --dst-opts type[:length][,type[:length]...]
              numeric  type  of  option  and  the length of the option data in
              octets.

   ecn
       This allows you to match the ECN bits of the IPv4/IPv6 and TCP  header.
       ECN  is  the Explicit Congestion Notification mechanism as specified in
       RFC3168

       [!] --ecn-tcp-cwr
              This matches if the TCP ECN CWR (Congestion Window Received) bit
              is set.

       [!] --ecn-tcp-ece
              This matches if the TCP ECN ECE (ECN Echo) bit is set.

       [!] --ecn-ip-ect num
              This matches a particular IPv4/IPv6 ECT (ECN-Capable Transport).
              You have to specify a number between `0" and `3".

   esp
       This module matches the SPIs in ESP header of IPsec packets.

       [!] --espspi spi[:spi]

   eui64 (IPv6-specific)
       This module matches the EUI-64 part of a stateless autoconfigured  IPv6
       address.  It compares the EUI-64 derived from the source MAC address in
       Ethernet frame with the lower 64 bits of the IPv6 source  address.  But
       "Universal/Local"  bit is not compared. This module doesn"t match other
       link layer frame, and is  only  valid  in  the  PREROUTING,  INPUT  and
       FORWARD chains.

   frag (IPv6-specific)
       This module matches the parameters in Fragment header.

       [!] --fragid id[:id]
              Matches the given Identification or range of it.

       [!] --fraglen length
              This  option cannot be used with kernel version 2.6.10 or later.
              The length of Fragment header is static and this option  doesn"t
              make sense.

       --fragres
              Matches if the reserved fields are filled with zero.

       --fragfirst
              Matches on the first fragment.

       --fragmore
              Matches if there are more fragments.

       --fraglast
              Matches if this is the last fragment.

   hashlimit
       hashlimit  uses hash buckets to express a rate limiting match (like the
       limit match) for a group of connections using a single  iptables  rule.
       Grouping  can be done per-hostgroup (source and/or destination address)
       and/or per-port. It gives you the ability to  express  "N  packets  per
       time  quantum  per  group" or "N bytes per seconds" (see below for some
       examples).

       A  hash  limit   option   (--hashlimit-upto,   --hashlimit-above)   and
       --hashlimit-name are required.

       --hashlimit-upto amount[/second|/minute|/hour|/day]
              Match  if  the  rate  is below or equal to amount/quantum. It is
              specified either as a number,  with  an  optional  time  quantum
              suffix  (the default is 3/hour), or as amountb/second (number of
              bytes per second).

       --hashlimit-above amount[/second|/minute|/hour|/day]
              Match if the rate is above amount/quantum.

       --hashlimit-burst amount
              Maximum initial number of packets to  match:  this  number  gets
              recharged  by  one  every  time the limit specified above is not
              reached, up to this number; the default is 5.   When  byte-based
              rate  matching is requested, this option specifies the amount of
              bytes that can exceed the given rate.   This  option  should  be
              used  with  caution  -- if the entry expires, the burst value is
              reset too.

       --hashlimit-mode {srcip|srcport|dstip|dstport},...
              A comma-separated list of objects to take into consideration. If
              no  --hashlimit-mode option is given, hashlimit acts like limit,
              but at the expensive of doing the hash housekeeping.

       --hashlimit-srcmask prefix
              When  --hashlimit-mode  srcip  is  used,  all  source  addresses
              encountered will be grouped according to the given prefix length
              and the so-created subnet will be subject to  hashlimit.  prefix
              must    be   between   (inclusive)   0   and   32.   Note   that
              --hashlimit-srcmask 0 is basically doing the same thing  as  not
              specifying  srcip  for --hashlimit-mode, but is technically more
              expensive.

       --hashlimit-dstmask prefix
              Like --hashlimit-srcmask, but for destination addresses.

       --hashlimit-name foo
              The name for the /proc/net/ipt_hashlimit/foo entry.

       --hashlimit-htable-size buckets
              The number of buckets of the hash table

       --hashlimit-htable-max entries
              Maximum entries in the hash.

       --hashlimit-htable-expire msec
              After how many milliseconds do hash entries expire.

       --hashlimit-htable-gcinterval msec
              How many milliseconds between garbage collection intervals.

       Examples:

       matching on source host
              "1000 packets per second for every host in 192.168.0.0/16" => -s
              192.168.0.0/16 --hashlimit-mode srcip --hashlimit-upto 1000/sec

       matching on source port
              "100  packets per second for every service of 192.168.1.1" => -s
              192.168.1.1 --hashlimit-mode srcport --hashlimit-upto 100/sec

       matching on subnet
              "10000 packets per minute for every  /28  subnet  (groups  of  8
              addresses)  in  10.0.0.0/8" => -s 10.0.0.0/8 --hashlimit-mask 28
              --hashlimit-upto 10000/min

       matching bytes per second
              "flows     exceeding     512kbyte/s"     =>     --hashlimit-mode
              srcip,dstip,srcport,dstport --hashlimit-above 512kb/s

       matching bytes per second
              "hosts  that  exceed  512kbyte/s,  but  permit  up to 1Megabytes
              without  matching"  --hashlimit-mode   dstip   --hashlimit-above
              512kb/s --hashlimit-burst 1mb

   hbh (IPv6-specific)
       This module matches the parameters in Hop-by-Hop Options header

       [!] --hbh-len length
              Total length of this header in octets.

       --hbh-opts type[:length][,type[:length]...]
              numeric  type  of  option  and  the length of the option data in
              octets.

   helper
       This module matches packets related to a specific conntrack-helper.

       [!] --helper string
              Matches packets related to the specified conntrack-helper.

              string can be "ftp" for packets  related  to  a  ftp-session  on
              default  port.  For other ports append -portnr to the value, ie.
              "ftp-2121".

              Same rules apply for other conntrack-helpers.

   hl (IPv6-specific)
       This module matches the Hop Limit field in the IPv6 header.

       [!] --hl-eq value
              Matches if Hop Limit equals value.

       --hl-lt value
              Matches if Hop Limit is less than value.

       --hl-gt value
              Matches if Hop Limit is greater than value.

   icmp (IPv4-specific)
       This extension can be  used  if  `--protocol  icmp"  is  specified.  It
       provides the following option:

       [!] --icmp-type {type[/code]|typename}
              This  allows  specification  of  the  ICMP  type, which can be a
              numeric ICMP type, type/code pair, or one of the ICMP type names
              shown by the command
               iptables -p icmp -h

   icmp6 (IPv6-specific)
       This  extension  can  be  used if `--protocol ipv6-icmp" or `--protocol
       icmpv6" is specified. It provides the following option:

       [!] --icmpv6-type type[/code]|typename
              This allows specification of the ICMPv6 type,  which  can  be  a
              numeric  ICMPv6  type,  type and code, or one of the ICMPv6 type
              names shown by the command
               ip6tables -p ipv6-icmp -h

   iprange
       This matches on a given arbitrary range of IP addresses.

       [!] --src-range from[-to]
              Match source IP in the specified range.

       [!] --dst-range from[-to]
              Match destination IP in the specified range.

   ipv6header (IPv6-specific)
       This module matches IPv6 extension headers and/or upper layer header.

       --soft Matches if the packet includes any of the headers specified with
              --header.

       [!] --header header[,header...]
              Matches the packet which EXACTLY includes all specified headers.
              The headers encapsulated with  ESP  header  are  out  of  scope.
              Possible header types can be:

       hop|hop-by-hop
              Hop-by-Hop Options header

       dst    Destination Options header

       route  Routing header

       frag   Fragment header

       auth   Authentication header

       esp    Encapsulating Security Payload header

       none   No  Next  header  which matches 59 in the "Next Header field" of
              IPv6 header or any IPv6 extension headers

       proto  which matches any upper layer protocol header. A  protocol  name
              from  /etc/protocols  and numeric value also allowed. The number
              255 is equivalent to proto.

   ipvs
       Match IPVS connection properties.

       [!] --ipvs
              packet belongs to an IPVS connection

       Any of the following options implies --ipvs (even negated)

       [!] --vproto protocol
              VIP protocol to match; by number or name, e.g. "tcp"

       [!] --vaddr address[/mask]
              VIP address to match

       [!] --vport port
              VIP port to match; by number or name, e.g. "http"

       --vdir {ORIGINAL|REPLY}
              flow direction of packet

       [!] --vmethod {GATE|IPIP|MASQ}
              IPVS forwarding method used

       [!] --vportctl port
              VIP port of the controlling connection to match, e.g. 21 for FTP

   length
       This module matches the length of the  layer-3  payload  (e.g.  layer-4
       packet) of a packet against a specific value or range of values.

       [!] --length length[:length]

   limit
       This  module  matches at a limited rate using a token bucket filter.  A
       rule using this extension will match until this limit is  reached.   It
       can be used in combination with the LOG target to give limited logging,
       for example.

       xt_limit has no negation support - you will have to use -m hashlimit  !
       --hashlimit rate in this case whilst omitting --hashlimit-mode.

       --limit rate[/second|/minute|/hour|/day]
              Maximum  average  matching  rate: specified as a number, with an
              optional `/second", `/minute", `/hour", or  `/day"  suffix;  the
              default is 3/hour.

       --limit-burst number
              Maximum  initial  number  of  packets to match: this number gets
              recharged by one every time the limit  specified  above  is  not
              reached, up to this number; the default is 5.

   mac
       [!] --mac-source address
              Match   source   MAC   address.    It   must   be  of  the  form
              XX:XX:XX:XX:XX:XX.  Note that this only makes sense for  packets
              coming  from  an  Ethernet  device  and entering the PREROUTING,
              FORWARD or INPUT chains.

   mark
       This module matches the netfilter mark field associated with  a  packet
       (which can be set using the MARK target below).

       [!] --mark value[/mask]
              Matches packets with the given unsigned mark value (if a mask is
              specified, this is logically ANDed  with  the  mask  before  the
              comparison).

   mh (IPv6-specific)
       This  extension is loaded if `--protocol ipv6-mh" or `--protocol mh" is
       specified. It provides the following option:

       [!] --mh-type type[:type]
              This allows specification of the Mobility Header(MH) type, which
              can be a numeric MH type, type or one of the MH type names shown
              by the command
               ip6tables -p mh -h

   multiport
       This module matches a set of source or destination  ports.   Up  to  15
       ports  can be specified.  A port range (port:port) counts as two ports.
       It can only be used in conjunction with one of the following protocols:
       tcp, udp, udplite, dccp and sctp.

       [!] --source-ports,--sports port[,port|,port:port]...
              Match  if  the  source port is one of the given ports.  The flag
              --sports is a convenient alias for this option.  Multiple  ports
              or  port ranges are separated using a comma, and a port range is
              specified using a colon.  53,1024:65535  would  therefore  match
              ports 53 and all from 1024 through 65535.

       [!] --destination-ports,--dports port[,port|,port:port]...
              Match  if  the  destination port is one of the given ports.  The
              flag --dports is a convenient alias for this option.

       [!] --ports port[,port|,port:port]...
              Match if either the source or destination ports are equal to one
              of the given ports.

   nfacct
       The  nfacct  match  provides the extended accounting infrastructure for
       iptables.  You have to use this  match  together  with  the  standalone
       user-space utility nfacct(8)

       The only option available for this match is the following:

       --nfacct-name name
              This allows you to specify the existing object name that will be
              use for accounting the traffic that this rule-set is matching.

       To use this extension, you have to create an accounting object:

              nfacct add http-traffic

       Then, you have to attach it to the accounting object via iptables:

              iptables -I INPUT -p tcp  --sport  80  -m  nfacct  --nfacct-name
              http-traffic

              iptables  -I  OUTPUT  -p  tcp --dport 80 -m nfacct --nfacct-name
              http-traffic

       Then, you can check for the amount of traffic that the rules match:

              nfacct get http-traffic

              { pkts = 00000000000000000156, bytes = 00000000000000151786 }  =
              http-traffic;

       You    can   obtain   nfacct(8)   from   http://www.netfilter.org   or,
       alternatively, from the git.netfilter.org repository.

   osf
       The osf module  does  passive  operating  system  fingerprinting.  This
       modules  compares some data (Window Size, MSS, options and their order,
       TTL, DF, and others) from packets with the SYN bit set.

       [!] --genre string
              Match  an  operating   system   genre   by   using   a   passive
              fingerprinting.

       --ttl level
              Do  additional  TTL  checks  on  the  packet  to  determine  the
              operating system.  level can be one of the following values:

       ·   0 - True IP address and fingerprint TTL comparison. This  generally
           works for LANs.

       ·   1  - Check if the IP header"s TTL is less than the fingerprint one.
           Works for globally-routable addresses.

       ·   2 - Do not compare the TTL at all.

       --log level
           Log determined genres into dmesg even if  they  do  not  match  the
           desired one.  level can be one of the following values:

       ·   0 - Log all matched or unknown signatures

       ·   1 - Log only the first one

       ·   2 - Log all known matched signatures

       You may find something like this in syslog:

       Windows  [2000:SP3:Windows  XP  Pro SP1, 2000 SP3]: 11.22.33.55:4024 ->
       11.22.33.44:139 hops=3 Linux [2.5-2.6:] : 1.2.3.4:42624  ->  1.2.3.5:22
       hops=4

       OS  fingerprints  are  loadable  using  the  nfnl_osf  program. To load
       fingerprints from a file, use:

       nfnl_osf -f /usr/share/xtables/pf.os

       To remove them again,

       nfnl_osf -f /usr/share/xtables/pf.os -d

       The     fingerprint     database     can     be     downlaoded     from
       http://www.openbsd.org/cgi-bin/cvsweb/src/etc/pf.os .

   owner
       This  module  attempts  to  match various characteristics of the packet
       creator, for locally generated packets. This match is only valid in the
       OUTPUT and POSTROUTING chains. Forwarded packets do not have any socket
       associated with them. Packets from kernel threads do have a socket, but
       usually no owner.

       [!] --uid-owner username

       [!] --uid-owner userid[-userid]
              Matches if the packet socket"s file structure (if it has one) is
              owned by the given user. You may also specify a  numerical  UID,
              or an UID range.

       [!] --gid-owner groupname

       [!] --gid-owner groupid[-groupid]
              Matches  if  the  packet socket"s file structure is owned by the
              given group.  You may also specify a numerical  GID,  or  a  GID
              range.

       [!] --socket-exists
              Matches if the packet is associated with a socket.

   physdev
       This  module  matches  on  the  bridge  port  input  and output devices
       enslaved  to  a  bridge  device.  This  module  is  a   part   of   the
       infrastructure  that  enables a transparent bridging IP firewall and is
       only useful for kernel versions above version 2.5.44.

       [!] --physdev-in name
              Name of a bridge port via which a packet is received  (only  for
              packets  entering  the INPUT, FORWARD and PREROUTING chains). If
              the interface name ends in  a  "+",  then  any  interface  which
              begins  with  this  name will match. If the packet didn"t arrive
              through a bridge device, this packet won"t  match  this  option,
              unless "!" is used.

       [!] --physdev-out name
              Name  of  a  bridge  port via which a packet is going to be sent
              (for  packets  entering  the  FORWARD,  OUTPUT  and  POSTROUTING
              chains).   If  the  interface  name  ends  in  a  "+",  then any
              interface which begins with this name will match. Note  that  in
              the  nat and mangle OUTPUT chains one cannot match on the bridge
              output port, however one can in the filter OUTPUT chain. If  the
              packet  won"t  leave  by a bridge device or if it is yet unknown
              what the output device will be, then the packet won"t match this
              option, unless "!" is used.

       [!] --physdev-is-in
              Matches if the packet has entered through a bridge interface.

       [!] --physdev-is-out
              Matches if the packet will leave through a bridge interface.

       [!] --physdev-is-bridged
              Matches  if  the  packet  is  being bridged and therefore is not
              being  routed.   This  is  only  useful  in  the   FORWARD   and
              POSTROUTING chains.

   pkttype
       This module matches the link-layer packet type.

       [!] --pkt-type {unicast|broadcast|multicast}

   policy
       This modules matches the policy used by IPsec for handling a packet.

       --dir {in|out}
              Used   to   select   whether   to  match  the  policy  used  for
              decapsulation or the policy that will be used for encapsulation.
              in  is valid in the PREROUTING, INPUT and FORWARD chains, out is
              valid in the POSTROUTING, OUTPUT and FORWARD chains.

       --pol {none|ipsec}
              Matches if the packet is subject to IPsec processing. --pol none
              cannot be combined with --strict.

       --strict
              Selects  whether  to match the exact policy or match if any rule
              of the policy matches the given policy.

       For each policy element that is to be described, one  can  use  one  or
       more of the following options. When --strict is in effect, at least one
       must be used per element.

       [!] --reqid id
              Matches the reqid of the policy rule. The reqid can be specified
              with setkey(8) using unique:id as level.

       [!] --spi spi
              Matches the SPI of the SA.

       [!] --proto {ah|esp|ipcomp}
              Matches the encapsulation protocol.

       [!] --mode {tunnel|transport}
              Matches the encapsulation mode.

       [!] --tunnel-src addr[/mask]
              Matches  the source end-point address of a tunnel mode SA.  Only
              valid with --mode tunnel.

       [!] --tunnel-dst addr[/mask]
              Matches the destination end-point address of a tunnel  mode  SA.
              Only valid with --mode tunnel.

       --next Start  the next element in the policy specification. Can only be
              used with --strict.

   quota
       Implements network quotas by decrementing  a  byte  counter  with  each
       packet.  The  condition  matches  until  the byte counter reaches zero.
       Behavior is reversed with negation (i.e. the condition does  not  match
       until the byte counter reaches zero).

       [!] --quota bytes
              The quota in bytes.

   rateest
       The  rate  estimator  can  match on estimated rates as collected by the
       RATEEST target.  It  supports  matching  on  absolute  bps/pps  values,
       comparing  two  rate  estimators and matching on the difference between
       two rate estimators.

       For a better understanding of the  available  options,  these  are  all
       possible combinations:

       ·   rateest operator rateest-bps

       ·   rateest operator rateest-pps

       ·   (rateest minus rateest-bps1) operator rateest-bps2

       ·   (rateest minus rateest-pps1) operator rateest-pps2

       ·   rateest1 operator rateest2 rateest-bps(without rate!)

       ·   rateest1 operator rateest2 rateest-pps(without rate!)

       ·   (rateest1  minus  rateest-bps1)  operator  (rateest2 minus rateest-
           bps2)

       ·   (rateest1 minus rateest-pps1)  operator  (rateest2  minus  rateest-
           pps2)

       --rateest-delta
           For  each  estimator  (either absolute or relative mode), calculate
           the difference between the estimator-determined flow rate  and  the
           static  value  chosen with the BPS/PPS options. If the flow rate is
           higher than the specified BPS/PPS, 0 will  be  used  instead  of  a
           negative   value.   In   other   words,   "max(0,  rateest#_rate  -
           rateest#_bps)" is used.

       [!] --rateest-lt
           Match if rate is less than given rate/estimator.

       [!] --rateest-gt
           Match if rate is greater than given rate/estimator.

       [!] --rateest-eq
           Match if rate is equal to given rate/estimator.

       In the so-called "absolute mode", only one rate estimator is  used  and
       compared  against  a  static  value, while in "relative mode", two rate
       estimators are compared against another.

       --rateest name
              Name of the one rate estimator for absolute mode.

       --rateest1 name

       --rateest2 name
              The names of the two rate estimators for relative mode.

       --rateest-bps [value]

       --rateest-pps [value]

       --rateest-bps1 [value]

       --rateest-bps2 [value]

       --rateest-pps1 [value]

       --rateest-pps2 [value]
              Compare the estimator(s) by bytes or  packets  per  second,  and
              compare  against the chosen value. See the above bullet list for
              which option is to be used in which case. A unit suffix  may  be
              used  -  available  ones  are:  bit, [kmgt]bit, [KMGT]ibit, Bps,
              [KMGT]Bps, [KMGT]iBps.

       Example: This is what can be used to route  outgoing  data  connections
       from  an  FTP server over two lines based on the available bandwidth at
       the time the data connection was started:

       # Estimate outgoing rates

       iptables -t mangle -A POSTROUTING -o  eth0  -j  RATEEST  --rateest-name
       eth0 --rateest-interval 250ms --rateest-ewma 0.5s

       iptables  -t  mangle  -A  POSTROUTING -o ppp0 -j RATEEST --rateest-name
       ppp0 --rateest-interval 250ms --rateest-ewma 0.5s

       # Mark based on available bandwidth

       iptables -t mangle -A balance -m  conntrack  --ctstate  NEW  -m  helper
       --helper  ftp -m rateest --rateest-delta --rateest1 eth0 --rateest-bps1
       2.5mbit --rateest-gt --rateest2 ppp0 --rateest-bps2 2mbit  -j  CONNMARK
       --set-mark 1

       iptables  -t  mangle  -A  balance  -m conntrack --ctstate NEW -m helper
       --helper ftp -m rateest --rateest-delta --rateest1 ppp0  --rateest-bps1
       2mbit  --rateest-gt  --rateest2 eth0 --rateest-bps2 2.5mbit -j CONNMARK
       --set-mark 2

       iptables -t mangle -A balance -j CONNMARK --restore-mark

   realm (IPv4-specific)
       This matches the routing realm.  Routing realms  are  used  in  complex
       routing setups involving dynamic routing protocols like BGP.

       [!] --realm value[/mask]
              Matches  a  given  realm  number (and optionally mask). If not a
              number, value can be a named realm from  /etc/iproute2/rt_realms
              (mask can not be used in that case).

   recent
       Allows  you to dynamically create a list of IP addresses and then match
       against that list in a few different ways.

       For example, you can create a "badguy" list out of people attempting to
       connect  to  port 139 on your firewall and then DROP all future packets
       from them without considering them.

       --set, --rcheck, --update and --remove are mutually exclusive.

       --name name
              Specify the list to use for the commands. If no  name  is  given
              then DEFAULT will be used.

       [!] --set
              This  will  add the source address of the packet to the list. If
              the source address is already in the list, this will update  the
              existing entry. This will always return success (or failure if !
              is passed in).

       --rsource
              Match/save the source address of each packet in the recent  list
              table. This is the default.

       --rdest
              Match/save  the destination address of each packet in the recent
              list table.

       --mask netmask
              Netmask that will be applied to this recent list.

       [!] --rcheck
              Check if the source address of the packet is  currently  in  the
              list.

       [!] --update
              Like  --rcheck,  except it will update the "last seen" timestamp
              if it matches.

       [!] --remove
              Check if the source address of the packet is  currently  in  the
              list  and  if  so that address will be removed from the list and
              the rule will return true. If the address is not found, false is
              returned.

       --seconds seconds
              This  option must be used in conjunction with one of --rcheck or
              --update. When used, this will narrow the match to  only  happen
              when  the  address  is  in the list and was seen within the last
              given number of seconds.

       --reap This option can only be  used  in  conjunction  with  --seconds.
              When  used,  this  will  cause entries older than the last given
              number of seconds to be purged.

       --hitcount hits
              This option must be used in conjunction with one of --rcheck  or
              --update.  When  used, this will narrow the match to only happen
              when the address is in the list and packets  had  been  received
              greater  than  or  equal  to the given value. This option may be
              used along with --seconds  to  create  an  even  narrower  match
              requiring a certain number of hits within a specific time frame.
              The maximum value for the hitcount parameter  is  given  by  the
              "ip_pkt_list_tot"  parameter  of  the  xt_recent  kernel module.
              Exceeding this value on the command line will cause the rule  to
              be rejected.

       --rttl This option may only be used in conjunction with one of --rcheck
              or --update. When used, this  will  narrow  the  match  to  only
              happen  when  the  address  is  in  the  list and the TTL of the
              current packet matches that of the packet which  hit  the  --set
              rule. This may be useful if you have problems with people faking
              their source address in order to DoS  you  via  this  module  by
              disallowing  others access to your site by sending bogus packets
              to you.

       Examples:

              iptables -A FORWARD -m recent --name badguy  --rcheck  --seconds
              60 -j DROP

              iptables  -A FORWARD -p tcp -i eth0 --dport 139 -m recent --name
              badguy --set -j DROP

       /proc/net/xt_recent/*  are  the  current   lists   of   addresses   and
       information about each entry of each list.

       Each  file  in /proc/net/xt_recent/ can be read from to see the current
       list or written two using the following commands to modify the list:

       echo +addr >/proc/net/xt_recent/DEFAULT
              to add addr to the DEFAULT list

       echo -addr >/proc/net/xt_recent/DEFAULT
              to remove addr from the DEFAULT list

       echo / >/proc/net/xt_recent/DEFAULT
              to flush the DEFAULT list (remove all entries).

       The module itself accepts parameters, defaults shown:

       ip_list_tot=100
              Number of addresses remembered per table.

       ip_pkt_list_tot=20
              Number of packets per address remembered.

       ip_list_hash_size=0
              Hash table size. 0 means to calculate it based  on  ip_list_tot,
              default: 512.

       ip_list_perms=0644
              Permissions for /proc/net/xt_recent/* files.

       ip_list_uid=0
              Numerical UID for ownership of /proc/net/xt_recent/* files.

       ip_list_gid=0
              Numerical GID for ownership of /proc/net/xt_recent/* files.

   rpfilter
       Performs  a  reverse  path  filter test on a packet.  If a reply to the
       packet would be sent via the same interface that the packet arrived on,
       the  packet  will  match.   Note  that, unlike the in-kernel rp_filter,
       packets protected by IPSec are not  treated  specially.   Combine  this
       match  with  the policy match if you want this.  Also, packets arriving
       via the loopback interface are always permitted.  This match  can  only
       be used in the PREROUTING chain of the raw or mangle table.

       --loose
              Used  to specifiy that the reverse path filter test should match
              even if the selected output device is not the expected one.

       --validmark
              Also use the packets" nfmark value when performing  the  reverse
              path route lookup.

       --accept-local
              This will permit packets arriving from the network with a source
              address that is also assigned to the local machine.

       --invert
              This will invert the sense of the match.   Instead  of  matching
              packets  that  passed  the reverse path filter test, match those
              that have failed it.

       Example to log and drop packets failing the reverse path filter test:

       iptables -t raw -N RPFILTER

       iptables -t raw -A RPFILTER -m rpfilter -j RETURN

       iptables -t raw  -A  RPFILTER  -m  limit  --limit  10/minute  -j  NFLOG
       --nflog-prefix "rpfilter drop"

       iptables -t raw -A RPFILTER -j DROP

       iptables -t raw -A PREROUTING -j RPFILTER

       Example to drop failed packets, without logging:

       iptables -t raw -A RPFILTER -m rpfilter --invert -j DROP

   rt (IPv6-specific)
       Match on IPv6 routing header

       [!] --rt-type type
              Match the type (numeric).

       [!] --rt-segsleft num[:num]
              Match the `segments left" field (range).

       [!] --rt-len length
              Match the length of this header.

       --rt-0-res
              Match the reserved field, too (type=0)

       --rt-0-addrs addr[,addr...]
              Match type=0 addresses (list).

       --rt-0-not-strict
              List of type=0 addresses is not a strict list.

   sctp
       This module matches Stream Control Transmission Protocol headers.

       [!] --source-port,--sport port[:port]

       [!] --destination-port,--dport port[:port]

       [!] --chunk-types {all|any|only} chunktype[:flags] [...]
              The  flag  letter  in  upper  case indicates that the flag is to
              match if set, in the lower case indicates to match if unset.

              Chunk types: DATA INIT  INIT_ACK  SACK  HEARTBEAT  HEARTBEAT_ACK
              ABORT   SHUTDOWN   SHUTDOWN_ACK   ERROR  COOKIE_ECHO  COOKIE_ACK
              ECN_ECNE ECN_CWR SHUTDOWN_COMPLETE ASCONF ASCONF_ACK FORWARD_TSN

              chunk type            available flags
              DATA                  I U B E i u b e
              ABORT                 T t
              SHUTDOWN_COMPLETE     T t

              (lowercase means flag should be "off", uppercase means "on")

       Examples:

       iptables -A INPUT -p sctp --dport 80 -j DROP

       iptables -A INPUT -p sctp --chunk-types any DATA,INIT -j DROP

       iptables -A INPUT -p sctp --chunk-types any DATA:Be -j ACCEPT

   set
       This module matches IP sets which can be defined by ipset(8).

       [!] --match-set setname flag[,flag]...
              where flags are the comma  separated  list  of  src  and/or  dst
              specifications  and there can be no more than six of them. Hence
              the command

               iptables -A FORWARD -m set --match-set test src,dst

              will match packets, for which (if the set type is ipportmap) the
              source  address  and  destination  port pair can be found in the
              specified set. If the set type of the specified  set  is  single
              dimension  (for  example  ipmap),  then  the  command will match
              packets for which  the  source  address  can  be  found  in  the
              specified set.

       --return-nomatch
              If  the  --return-nomatch  option  is specified and the set type
              supports the nomatch flag, then  the  matching  is  reversed:  a
              match with an element flagged with nomatch returns true, while a
  
声明:该文观点仅代表作者本人,入门客AI创业平台信息发布平台仅提供信息存储空间服务,如有疑问请联系rumenke@qq.com。