nditer —— numpy.ndarray 多维数组的迭代
1. Single array iteration
>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a):
... print x,
...
0 1 2 3 4 5
- 也即默认是行序优先(row-major order,或者说是 C-order),这样迭代遍历的目的在于,实现和内存分布格局的一致性,以提升访问的便捷性;
>>> for x in np.nditer(a.T):
... print x,
...
0 1 2 3 4 5
>>> for x in np.nditer(a.T.copy(order="C")):
... print x,
...
0 3 1 4 2 5
- 也即对
a
和a.T
的遍历执行的是同意顺序,也即是它们在内存中的实际存储顺序。
2. 控制遍历顺序
for x in np.nditer(a, order="F"):
Fortran order,也即是列序优先;for x in np.nditer(a.T, order="C"):
C order,也即是行序优先;
3. 修改数组中元素的值
默认情况下,nditer
将视待迭代遍历的数组为只读对象(read-only),为了在遍历数组的同时,实现对数组元素值得修改,必须指定 read-write
或者 write-only
的模式。
>>> a
array([[0, 1, 2],
[3, 4, 5]])
>>> for x in np.nditer(a, op_flags=["readwrite"]):
... x[...] = 2 * x
...
>>> a
array([[ 0, 2, 4],
[ 6, 8, 10]])
4. 使用外部循环
将一维的最内层的循环转移到外部循环迭代器,使得 numpy 的矢量化操作在处理更大规模数据时变得更有效率。
>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, flags=["external_loop"]):
... print x,
...
[0 1 2 3 4 5]
>>>
>>> for x in np.nditer(a, flags=["external_loop"], order="F"):
... print x,
...
[0 3] [1 4] [2 5]
5. 追踪单个索引或多重索引(multi-index)
>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],
[3, 4, 5]])
>>> it = np.nditer(a, flags=["f_index"])
>>> while not it.finished:
... print "%d <%d>" % (it[0], it.index),
... it.iternext()
...
0 <0> 1 <2> 2 <4> 3 <1> 4 <3> 5 <5>
# 索引的编号,以列序优先
>>> it = np.nditer(a, flags=["multi_index"])
>>> while not it.finished:
... print "%d <%s>" % (it[0], it.multi_index),
... it.iternext()
...
0 <(0, 0)> 1 <(0, 1)> 2 <(0, 2)> 3 <(1, 0)> 4 <(1, 1)> 5 <(1, 2)>
references
- Iterating Over Arrays
声明:该文观点仅代表作者本人,入门客AI创业平台信息发布平台仅提供信息存储空间服务,如有疑问请联系rumenke@qq.com。
- 上一篇: numpy中多维数组的轴(axis)
- 下一篇: numpy 常用api(一)