matlab 运行 AlexNet
0. alexnet 工具箱下载
下载地址:Neural Network Toolbox(TM) Model for AlexNet Network
- 需要先注册(十分简单),登陆,下载;
- 下载完成之后,windows 是无法运行该文件的;
- 需要打开 matlab,进入到该文件所在的路径,双击运行;(注:需要较久的时间下载安装 alexnet)
1. demo(十一行代码)
deep-learning-in-11-lines-of-matlab-code
clear
camera = webcam;
nnet = alexnet;
while true
picture = camera.snapshot;
picture = imresize(picture, [227, 227]);
label = classify(nnet, picture);
image(picture);
title(char(label));
end
2. 网络结构
>> nnet = alexnet;
>> nnet.Layers
1 "data" Image Input 227x227x3 images with "zerocenter" normalization
2 "conv1" Convolution 96 11x11x3 convolutions with stride [4 4] and padding [0 0]
3 "relu1" ReLU ReLU
4 "norm1" Cross Channel Normalization cross channel normalization with 5 channels per element
5 "pool1" Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]
6 "conv2" Convolution 256 5x5x48 convolutions with stride [1 1] and padding [2 2]
7 "relu2" ReLU ReLU
8 "norm2" Cross Channel Normalization cross channel normalization with 5 channels per element
9 "pool2" Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]
10 "conv3" Convolution 384 3x3x256 convolutions with stride [1 1] and padding [1 1]
11 "relu3" ReLU ReLU
12 "conv4" Convolution 384 3x3x192 convolutions with stride [1 1] and padding [1 1]
13 "relu4" ReLU ReLU
14 "conv5" Convolution 256 3x3x192 convolutions with stride [1 1] and padding [1 1]
15 "relu5" ReLU ReLU
16 "pool5" Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]
17 "fc6" Fully Connected 4096 fully connected layer
18 "relu6" ReLU ReLU
19 "drop6" Dropout 50% dropout
20 "fc7" Fully Connected 4096 fully connected layer
21 "relu7" ReLU ReLU
22 "drop7" Dropout 50% dropout
23 "fc8" Fully Connected 1000 fully connected layer
24 "prob" Softmax softmax
25 "output" Classification Output cross-entropy with "tench", "goldfish", and 998 other classes
声明:该文观点仅代表作者本人,入门客AI创业平台信息发布平台仅提供信息存储空间服务,如有疑问请联系rumenke@qq.com。