作为我们的第一个项目,我们来实现一个经典新手编程问题:猜猜看游戏。它是这么工作的:我们的程序将会随机生成一个1到100之间的随机数。它接着会提示我们猜一个数。当我们猜了一个数之后,它会告诉我们是大了还是小了。当我们猜对了,它会祝贺我们。听起来如何?
准备
我们准备一个新项目。进入到你的项目目录。还记得我们曾经创建我们hello_world
的项目目录和Cargo.toml
文件吗?Cargo有一个命令来为我们做这些。让我们试试:
$ cd ~/projects
$ cargo new guessing_game --bin
$ cd guessing_game
我们将项目名字传递给cargo new
,然后用了--bin
标记,因为我们要创建一个二进制文件,而不是一个库文件。
查看生成的Cargo.toml
文件:
[package]
name = "guessing_game"
version = "0.0.1"
authors = ["Your Name "]
Cargo从环境变量中获取这些信息。如果这不对,赶紧修改它。
最后,Cargo为我们生成了应给“Hello, world!”。查看src/main.rs
文件:
fn main() {
println!("Hello, world!")
}
让我们编译Cargo为我们生成的项目:
$ cargo build
Compiling guessing_game v0.0.1 (file:///home/you/projects/guessing_game)
很好,再次打开你的src/main.rs
文件。我们会将所有代码写在这个文件里。稍后我们会讲到多文件项目。
在我们继续之前,让我们再告诉你一个新的Cargo命令:run
。cargo run
跟cargo build
类似,并且还会运行我们刚生成的可执行文件。试试它:
$ cargo run
Compiling guessing_game v0.0.1 (file:///home/you/projects/guessing_game)
Running `target/guessing_game`
Hello, world!
很好!run
命令在我们需要快速重复运行一个项目是非常方便。我们的游戏就是这么一个项目,在我们添加新内容之前我们需要经常快速测试项目。
处理一次猜测
让我们开始吧!我们需要做的第一件事是让我们的玩家输入一个猜测。把这些放入你的src/main.rs
:
use std::io;
fn main() {
println!("Guess the number!");
println!("Please input your guess.");
let mut guess = String::new();
io::stdin().read_line(&mut guess)
.ok()
.expect("Failed to read line");
println!("You guessed: {}", guess);
}
这有好多东西!让我们一点一点的过一遍。
use std::io;
我们需要获取用户输入,并接着打印结果作为输出。为此,我们需要标准库的io
库。Rust为所有程序只导入了很少一些东西,‘prelude’。如果它不在预先导入中,你将不得不直接use
它。
fn main() {
就像你之前见过的,main()
是你程序的入口点。fn
语法声明了一个新函数,()
表明这里没有参数,而{
开始了函数体。因为我们不包含返回类型,它假设是()
,一个空的元组。
println!("Guess the number!");
println!("Please input your guess.");
我们之前学过println!()
是一个在屏幕上打印字符串的宏。
let mut guess = String::new();
现在我们遇到有意思的东西了!这一小行有很多内容。第一个我们需要注意到的是let语句,它用来创建“变量绑定”。它使用这个形式:
let foo = bar;
这回创建一个叫做foo
的新绑定,并绑定它到bar
这个值上。在很多语言中,这叫做一个“变量",不过Rust的变量绑定暗藏玄机。
例如,它们默认是不可变的。这时为什么我们的例子使用了mut
:它让一个绑定可变,而不是不可变。let
并不从左手边获取一个名字,事实上他接受一个模式(pattern)。我们会在后面更多的使用模式。现在它使用起来非常简单:
let foo = 5; // immutable.
let mut bar = 5; // mutable
噢,同时//
会开始一个注释,直到这行的末尾。Rust忽略注释中的任何内容。
那么现在我们知道了let mut guess
会引入一个叫做guess
的可变绑定,不过我们不得不看看=
的右侧,它绑定的内容:String::new()
。
String
是一个字符串类型,由标准库提供。String是一个可增长的,UTF-8编码的文本。
::new()
语法用了::
因为它是一个特定类型的”关联函数“。这就是说,它与String
自身关联,而不是与一个特定的String
实例关联。一些语言管这叫一个”静态方法“。
这个函数叫做new()
,因为它创建了一个新的,空的String
。你会在很多类型上找到new()
函数,因为它是创建一些类型新值的通常名称。
让我们继续:
io::stdin().read_line(&mut guess)
.ok()
.expect("Failed to read line");
这稍微有点多!让我们一点一点来。第一行有两部分。这是第一部分:
io::stdin()
还记得我们如何在程序的第一行use
std::io
的吗?现在我们调用了一个与之相关的函数。如果我们不use std::io
,那么我们就得写成std::io::stdin()
。
这个特殊的函数返回一个句柄到你终端的标准输入。更具体的,一个std::io::Stdin。
下一部分将用这个句柄去获取用户输入:
.read_line(&mut guess)
这里,我们对我们的句柄调用了read_line()方法。方法(404)就像关联函数,不过只在一个类型的特定实例上可用,而不是这个类型本身。我们也向read_line()
传递了一个参数:&mut guess
。
还记得我们上面怎么绑定guess
的吗?我们说它是可变的。然而,read_line
并不获取String
作为一个参数:它获取一个&mut String
。Rust有一个叫做“引用”的功能,它允许你对一片数据有多个引用,用它可以减少拷贝。引用是一个复杂的功能,因为Rust的一个主要卖点就是它如何安全和便捷的使用引用。然而,目前我们还不需要知道很多细节来完成我们的程序。现在,所有我们需要了解的是像let
绑定,引用默认是不可变的。因此,我们需要写成&mut guess
,而不是&guess
。
为什么read_line()
会需要一个字符串的可变引用呢?它的工作是从标准输入获取用户输入,并把它放入一个字符串。所以它用字符串作为参数,为了可以增加输入,它必须是可变的。
不过我们还未完全看完这行代码。虽然它是单独的一行代码,它是只是这个单独逻辑代码行的开头部分:
.ok()
.expect("Failed to read line");
当你用.foo()
语法调用一个函数的时候,你可能会引入一个新行符或其它空白。这帮助我们拆分长的行。我们_可以_这么干:
io::stdin().read_line(&mut guess).ok().expect("failed to read line");
不过这样会难以阅读。所以我们把它分开,3行对应3个方法调用。我们已经谈论过了read_line()
,不过ok()
和expect()
呢?好吧,我们已经提到过read_line()
将用户输入放入我们传递给它的&mut String
中。不过他也返回一个值:在这个例子中,一个io::Result。Rust的标准库中有很多叫做Result
的类型:一个泛型Result,然后是子库的特殊版本,例如io::Result
。
这个Result
类型的作用是编码错误处理信息。Result
类型的值,像任何(其它)类型,有定义在其上的方法。在这个例子中,io::Result
有一个ok()
方法,它说“我们想假设这个值是一个成功的值。如果不是,就抛出错误信息”。为什么要抛出错误呢?好吧,对于一个基础的程序,我们只想打印出一个通用错误,因为基本上任何问题意味着我们不能继续。ok()方法返回一个值,有另一个方法定义在其上:expect()
。expect()方法获取调用它的值,而且如果它不是一个成功的值,panic!并带有你传递给它的信息。这样的panic!
会使我们的程序崩溃,显示(我们传递的)信息。
如果我们去掉这两个函数调用,我们的程序会编译通过,不过我们会得到一个警告:
$ cargo build
Compiling guessing_game v0.1.0 (file:///home/you/projects/guessing_game)
src/main.rs:10:5: 10:39 warning: unused result which must be used,
#[warn(unused_must_use)] on by default
src/main.rs:10 io::stdin().read_line(&mut guess);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Rust警告我们我们并未使用Result
的值。这个警告来自io::Result
的一个特殊注解。Rust尝试告诉你你并未处理一个可能的错误。阻止错误的正确方法是老实编写错误处理。幸运的是,如果我们只是想如果这有一个问题就崩溃的话,我们可以用这两个小方法。如果我们想从错误中恢复什么的,我们得做点别的,不过我们会把它留给接下来的项目。
这是我们第一个例子仅剩的一行:
println!("You guessed: {}", guess);
}
这打印出我们保存输入的字符串。{}
是一个占位符,所以我们传递guess
作为一个参数。如果我们有多个{}
,我们应该传递多个参数:
let x = 5;
let y = 10;
println!("x and y: {} and {}", x, y);
简单加愉快。
不过怎么说,这只是一个观光。我们可以用cargo run
运行我们写的:
$ cargo run
Compiling guessing_game v0.1.0 (file:///home/you/projects/guessing_game)
Running `target/debug/guessing_game`
Guess the number!
Please input your guess.
6
You guessed: 6
好的!我们的第一部分完成了:我们可以从键盘获取输入,并把它打印回去。
生成一个秘密数字
接下来,我们要生成一个秘密数字。Rust标准库中还未包含一个随机数功能。Rust团队确实,然而,提供了一个rand
crate。一个“包装箱”(crate)是一个Rust代码的包。我们已经构建了一个”二进制包装箱“,它是一个可执行文件。rand
是一个”库包装箱“,它包含被认为应该被其它程序使用的代码。
使用外部包装箱是Cargo的亮点。在我们使用rand
编写代码之前,我们需要修改我们的Cargo.toml
。打开它,并在末尾增加这几行:
[dependencies]
rand="0.3.0"
Cargo.toml
的[dependencies]
部分就像[package]
部分:所有之后的东西都是它的一部分,直到下一个部分开始。Cargo使用依赖部分来知晓你用的外部包装箱的依赖,和你要求的版本。在这个例子中,我们用了0.3.0
版本。Cargo理解语义化版本,它是一个编写版本号的标准。如果我们想要使用最新版本我们可以使用*
或者我们可以使用一个范围的版本。Cargo文档包含更多细节。
现在,在不修改任何我们代码的情况下,让我们构建我们的项目:
$ cargo build
Updating registry `https://github.com/rust-lang/crates.io-index`
Downloading rand v0.3.8
Downloading libc v0.1.6
Compiling libc v0.1.6
Compiling rand v0.3.8
Compiling guessing_game v0.1.0 (file:///home/you/projects/guessing_game)
(当然,你可能会看到不同的版本)
很多新的输出!现在我们有了一个外部依赖,Cargo从记录中获取了所有东西的最新版本,它们是来自Crates.io的一份拷贝。Crates.io是Rust生态系统中人们发表开源Rust项目供它人使用的地方。
在更新了记录后,Cargo检查我们的[dependencies]
并下载任何我们还没有的东西。在这个例子中,虽然我们只说了我们要依赖rand
,我们也获取了一份libc
的拷贝。这是因为rand
依赖libc
工作。在下载了它们之后,它编译它们,然后接着编译我们的项目。
如果我们再次运行cargo build
,我们会得到不同的输出:
$ cargo build
没错,木有输出!Cargo知道我们的项目被构建了,并且所有它的依赖也被构建了,所以没有理由再做一遍所有这一些。没有事情做,它简单的退出了。如果我们再打开src/main.rs
,做一个无所谓的修改,然后接着再保存,我们就会看到一行:
$ cargo build
Compiling guessing_game v0.1.0 (file:///home/you/projects/guessing_game)
所以,我们告诉Cargo我们需要任何0.3.x
版本的rand
,并且因此它获取在本文被编写时的最新版,v0.3.8
。不过你瞧瞧当下一周,v0.3.9
出来了,带有一个重要的bug修改吗?虽然bug修改很重要,不过如果0.3.9
版本包含破坏我们代码的回归呢?
这个问题的回答是现在你会在你项目目录中找到的Cargo.lock
。当你第一次构建你的项目的时候,Cargo查明所有符合你的要求的版本,并接着把它们写到了Cargo.lock
文件里。当你在未来构建你的项目的时候,Cargo会注意到Cargo.lock
的存在,并接着使用指定的版本而不是再次去做查明版本的所有工作。这让你有了一个可重复的自动构建。换句话说,我们会保持在0.3.8
直到我们显式的升级,这对任何使用我们共享的代码的人同样有效,感谢锁文件。
当我们_确实_想要使用v0.3.9
怎么办?Cargo有另一个命令,update
,它代表“忽略锁,搞清楚所有我们指定的最新版本。如果这能工作,将这些版本写入锁文件”。不过,默认,Cargo只会寻找大于0.3.0
小于0.4.0
的版本。如果你想要移动到0.4.x
,我们不得不直接更新Cargo.toml
文件。当我们这么做,下一次我们cargo build
,Cargo会更新索引并重新计算我们的rand
要求。
关于 Cargo和它的生态系统有很多东西要说,不过眼下,这是我们需要知道的一切。Cargo让重用库变得真正的简单,并且Rustacean们可以编写更小的由很多子包组装成的项目。
让我们确实的使用rand
。这是我们的下一步:
extern crate rand;
use std::io;
use rand::Rng;
fn main() {
println!("Guess the number!");
let secret_number = rand::thread_rng().gen_range(1, 101);
println!("The secret number is: {}", secret_number);
println!("Please input your guess.");
let mut guess = String::new();
io::stdin().read_line(&mut guess)
.ok()
.expect("failed to read line");
println!("You guessed: {}", guess);
}
我们做的第一件事是修改第一行。现在它是extern crate rand
。因为我们在我们的[dependencies]
声明了rand
,我们可以用extern crate
来让Rust知道我们正在使用它。这也等同于一个use rand;
,所以我们可以通过rand::
前缀使用rand
包装箱中的一切。
下一步,我们增加了另一行use
:use rand::Rng
。我们一会将要使用一个方法,并且它要求Rng
在作用域中才能工作。这个基本观点是:方法定义在一些叫做“特性”的东西上面,而为了让方法能够工作,需要这个特性位于作用域中。关于更多细节,阅读特性部分。
这里还有两行我们增加的,在中间:
let secret_number = rand::thread_rng().gen_range(1, 101);
println!("The secret number is: {}", secret_number);
我们用rand::thread_rng()
函数来获取一个随机数生成器的拷贝,它位于我们特定的执行线程的本地。因为我们use rand::Rng
了,我们有一个gen_range()
方法可用。这个函数获取两个参数,并产生一个位于其间的数字。它包含下限,不过不包含上限,所以我们需要1
和101
来生成一个1
和100
之间的数。
第二行仅仅打印出了秘密数字。这在我们开发我们的程序时很有用,所以我们可以简单的测试出来。不过在最终版本中我们会删除它。在开始就打印出结果就没什么可玩的了!
尝试运行我们的新程序几次:
$ cargo run
Compiling guessing_game v0.1.0 (file:///home/you/projects/guessing_game)
Running `target/debug/guessing_game`
Guess the number!
The secret number is: 7
Please input your guess.
4
You guessed: 4
$ cargo run
Running `target/debug/guessing_game`
Guess the number!
The secret number is: 83
Please input your guess.
5
You guessed: 5
好的!接下来:让我们比较我们的猜测和秘密数字。
比较猜测
现在我们得到了用户输入,让我们比较我们的猜测和随机值。这是我们的下一步,虽然它还不能正常工作:
extern crate rand;
use std::io;
use std::cmp::Ordering;
use rand::Rng;
fn main() {
println!("Guess the number!");
let secret_number = rand::thread_rng().gen_range(1, 101);
println!("The secret number is: {}", secret_number);
println!("Please input your guess.");
let mut guess = String::new();
io::stdin().read_line(&mut guess)
.ok()
.expect("failed to read line");
println!("You guessed: {}", guess);
match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!"),
Ordering::Greater => println!("Too big!"),
Ordering::Equal => println!("You win!"),
}
}
这有一些新东西。第一个是另一个use
。我们带来了一个叫做std::cmp::Ordering
类型到作用域中。接着,底部5行代码使用了它:
match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!"),
Ordering::Greater => println!("Too big!"),
Ordering::Equal => println!("You win!"),
}
cmp()
可以在任何能被比较的值上调用,并且它获取你想要比较的值的引用。它返回我们之前use
的Ordering
类型。我们使用一个match语句来决定具体是哪种Ordering
。Ordering
是一个枚举,“enumeration”的简写,它看起来像这样:
enum Foo {
Bar,
Baz,
}
通过这个定义,任何Foo
可以是Foo::Bar
或者Foo::Baz
。我们用::
来表明一个特定enum
变量的命名空间。
Ordering枚举有3个可能的变量:Less
,Equal
和Greater
。match
语句获取类型的值,并让你为每个可能的值创建一个“分支”。因为我们有3种类型的Ordering
,我们有3个分支:
match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!"),
Ordering::Greater => println!("Too big!"),
Ordering::Equal => println!("You win!"),
}
如果它是Less
,我们打印Too small!
,如果它是Greater
,Too big!
,而如果Equal
,You win!
。match
真的灰常有用,并且在Rust中经常使用。
我确实提到过我们还不能正常运行,虽然。让我们试试:
$ cargo build
Compiling guessing_game v0.1.0 (file:///home/you/projects/guessing_game)
src/main.rs:28:21: 28:35 error: mismatched types:
expected `&collections::string::String`,
found `&_`
(expected struct `collections::string::String`,
found integral variable) [E0308]
src/main.rs:28 match guess.cmp(&secret_number) {
^~~~~~~~~~~~~~
error: aborting due to previous error
Could not compile `guessing_game`.
噢!这是一个大错误。它的核心是我们有“不匹配的类型”。Rust有一个强大的静态类型系统。然而,它也有类型推断。当我们写let guess = String::new()
,Rust能够推断出guess
应该是一个String
,并因此不需要我们写出类型。而我们的secret_number
,这有很多类型可以有从1
到100
的值:i32
,一个32位数,或者u32
,一个无符号的32位值,或者i64
,一个64位值。或者其它什么的。目前为止,这并不重要,所以Rust默认为i32
。然而,这里,Rust并不知道如何比较guess
和secret_number
。它们必须是相同的类型。最终,我们想要我们作为输入读到的String
转换为一个真正的数字类型,来进行比较。我们可以用额外3行来搞定它。这是我们的新程序:
extern crate rand;
use std::io;
use std::cmp::Ordering;
use rand::Rng;
fn main() {
println!("Guess the number!");
let secret_number = rand::thread_rng().gen_range(1, 101);
println!("The secret number is: {}", secret_number);
println!("Please input your guess.");
let mut guess = String::new();
io::stdin().read_line(&mut guess)
.ok()
.expect("failed to read line");
let guess: u32 = guess.trim().parse()
.ok()
.expect("Please type a number!");
println!("You guessed: {}", guess);
match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!"),
Ordering::Greater => println!("Too big!"),
Ordering::Equal => println!("You win!"),
}
}
新的3行是:
let guess: u32 = guess.trim().parse()
.ok()
.expect("Please type a number!");
稍等,我认为我们已经用过了一个guess
?确实,不过Rust允许我们用新值“遮盖(shadow)”之前的guess
。这在这种具体的情况中经常被用到,guess
开始是一个String
,不过我们想要把它转换为一个u32
。遮盖(Shadowing)让我们重用guess
名字,而不是强迫我们想出两个独特的像guess_str
和guess
,或者别的什么的。
我们绑定guess
到一个看起来像我们之前写的表达式:
guess.trim().parse()
后跟一个ok().expect()
调用。这里,guess
引用旧的guess
,那个我们输入用到的String
。String
的trim()
方法会去掉我们字符串开头和结尾的任何空格。这很重要,因为我们不得不按“回车”键来满足read_line()
。这意味着如果我们输入5
并按回车,guess
看起来像这样:5
。
代表“新行”,回车键。trim()
去掉这些,保留5
给我们的字符串。字符串的parse()
方法将字符串解析为一些类型的数字。因为它可以解析多种数字,我们需要给Rust一些提醒作为我们具体想要的数字的类型。因此,let guess: u32
。guess
后面的分号(:
)告诉Rust我们要标注它的类型。u32
是一个无符号的,32位整型。Rust有一系列内建类型,不过我们选择了u32
。它是一个小的正数的好的默认选择。
就像read_line()
,我们调用parse()
可能产生一个错误。如果我们的字符串包含`A